Language-independent Gender Prediction on Twitter
نویسندگان
چکیده
In this paper we present a set of experiments and analyses on predicting the gender of Twitter users based on languageindependent features extracted either from the text or the metadata of users’ tweets. We perform our experiments on the TwiSty dataset containing manual gender annotations for users speaking six different languages. Our classification results show that, while the prediction model based on language-independent features performs worse than the bag-of-words model when training and testing on the same language, it regularly outperforms the bag-of-words model when applied to different languages, showing very stable results across various languages. Finally we perform a comparative analysis of feature effect sizes across the six languages and show that differences in our features correspond to cultural distances.
منابع مشابه
Say It with Colors: Language-Independent Gender Classification on Twitter
Online Social Networks (OSNs) have spread at stunning speed over the past decade. They are now a part of the lives of dozens of millions of people. The onset of OSNs has stretched the traditional notion of community to include groups of people who have never met in person but communicate with each other through OSNs to share knowledge, opinions, interests and activities. Here we explore in dept...
متن کاملWhy Gender and Age Prediction from Tweets is Hard: Lessons from a Crowdsourcing Experiment
There is a growing interest in automatically predicting the gender and age of authors from texts. However, most research so far ignores that language use is related to the social identity of speakers, which may be different from their biological identity. In this paper, we combine insights from sociolinguistics with data collected through an online game, to underline the importance of approachi...
متن کاملLanguage-independent Bayesian sentiment mining of Twitter
This paper outlines a new language-independent model for sentiment analysis of short, social-network statuses. We demonstrate this on data from Twitter, modelling happy vs sad sentiment, and show that in some circumstances this outperforms similar Naive Bayes models by more than 10%. We also propose an extension to allow the modelling of different sentiment distributions in different geographic...
متن کاملSentiment in Social Media: Bootstrapping Subjectivity Clues from Multilingual Twitter Streams and Exploiting Gender Language Differences on Twitter
We study subjective language in social media and create Twitter-specific lexicons via bootstrapping sentiment-bearing terms from multilingual Twitter streams. Starting with a domain-independent, highprecision sentiment lexicon and a large pool of unlabeled data, we bootstrap Twitter-specific sentiment lexicons, using a small amount of labeled data to guide the process. Our experiments on Englis...
متن کاملA Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کامل